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A version of the discrete-ordinates method recently developed for radiative-transfer
calculations is used along with numerical linear-algebra techniques and two-dimen-
sional Fourier-transform procedures to establish the radiation flux and thez compo-
nent of the radiation current at all locations in a finite plane-parallel layer irradiated
by a beam incident only at one point on one surface. In addition to a general for-
mulation basic to a beam that is incident at an oblique angle, for which the flux
and current depend on three spatial variables, the Fourier transforms of the flux and
current are inverted numerically for the two-dimensional case relevant to a normally
incident beam. The reported numerical procedures, while computationally intensive,
are thought to yield, for the considered test case, the radiation flux and the normal
component of the radiation current with five figures of accuracy.c© 2000 Academic Press

1. INTRODUCTION

One has to admit that the classical searchlight problem defined in the field of radiative
transfer by Chandrasekhar [1] some 40 years ago still today represents a problem in particle-
transport theory that is sufficiently difficult that very few high-quality computational results
have been reported. In regard to early papers devoted to problems somewhat related to the
searchlight problem, we consider that Elliott [2], who based his analysis on two-dimensional
Fourier-transform procedures, defined the approach that has led to the (limited quantity of)
semi-analytical results in existence today. We note that Rybicki [3] has given an extensive
review of early work devoted explicitly to the searchlight problem. As for more recent
efforts, we can say, to the best of our knowledge, that Refs. [4–8] are the ones most directly
related to our work here. As did Elliott [2], we use two-dimensional Fourier-transform
techniques, and while much can be done in transform space, we consider that without the
evaluation of the required inversion integrals the job is in no way complete. It is for this
reason that we consider Refs. [6, 8–10] to be particularly significant.

The solution developed here has very much in common with Ref. [8], but instead of
basing our solution to a certain “pseudo problem” on theFN method [11] we make use of
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some recent work [12, 13] with the discrete-ordinates method in order to provide a new,
alternative solution.

The searchlight problem we consider is defined by the equation of transfer

µ
∂

∂z
I (z,ρ, Ω)+ ω · ∂

∂ρ
I (z,ρ, Ω)+ I (z,ρ, Ω) = $

4π

∫ ∫
I (z,ρ, Ω′) dΩ′, (1)

for all z,ρ, andΩ, and the boundary conditions

I [0,ρ, Ω(µ, φ)] = 1

2πρ
δ(ρ)δ(µ− µ0)δ(φ − φ0) (2a)

and

I [z0,ρ, Ω(−µ, φ)] = 0 (2b)

for µ∈ (0, 1] andφ ∈ [0, 2π ]. We follow closely the notation of Rybicki [3] and note that
z∈ [0, z0] andρ, which lies in thex-y plane, locate (in terms of mean free paths) the position
in the layer and thatΩ(µ, φ), with µ= cosθ , is a unit vector that defines the direction of
propagation (see Fig. 1). In addition,ω is the projection ofΩ in thex-y plane,Ω(µ0, φ0)

defines the direction of the incident beam, and$ < 1 is the mean number of secondary
particles per collision.

Considering that Eqs. (1) and (2) define our basic problem, we seek to compute the
radiation flux

I0(z,ρ) =
∫ ∫

I (z,ρ, Ω) dΩ (3a)

and thez component of the radiation current

I1(z,ρ) =
∫ ∫

µI (z,ρ, Ω) dΩ (3b)

FIGURE 1
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for z∈ [0, z0] and allρ of interest. Continuing to follow previously mentioned works, we
let k, given in terms ofk= |k| andψ (see Fig. 1), define our transform vector so that we can
take a two-dimensional Fourier transform of Eqs. (1) and (2) to find the transfer equation
(in transform space)

µ
∂

∂z
9(z, µ, φ : k)+ u(µ, φ : k)9(z, µ, φ : k)= $

4π

∫ 1

−1

∫ 2π

0
9(z, µ′, φ′ : k) dφ′ dµ′,

(4)

for z∈ (0, z0), µ∈ [−1, 1] and allφ, and the boundary conditions

9(0, µ, φ : k)= δ(µ− µ0)δ(φ − φ0) (5a)

and

9(z0,−µ, φ : k) = 0 (5b)

for µ∈ (0, 1] andφ ∈ [0, 2π ]. Here

u(µ, φ : k) = 1− ik(1− µ2)1/2 cos(φ − ψ) (6)

and

9(z, µ, φ : k) =
∫ ∫

I (z,ρ, Ω) exp{i k · ρ} dρ. (7)

We can also take the Fourier transform of Eqs. (3) to obtain∫ ∫
I0(z,ρ) exp{i k · ρ} dρ = 90(z : k) (8a)

and ∫ ∫
I1(z,ρ) exp{i k · ρ} dρ = 91(z : k), (8b)

where

90(z : k) =
∫ 1

−1

∫ 2π

0
9(z, µ, φ : k) dφ dµ (9a)

and

91(z : k) =
∫ 1

−1

∫ 2π

0
µ9(z, µ, φ : k) dφ dµ. (9b)

Of course once we have90(z : k) and91(z : k) the radiation flux and thez component of
the radiation current are available, at least in principle, from the inversion integrals

I0(z,ρ) = 1

(2π)2

∫ ∫
90(z : k) exp{−i k · ρ} dk (10a)
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and

I1(z,ρ) = 1

(2π)2

∫ ∫
91(z : k) exp{−i k · ρ} dk (10b)

or

I0(z, ρ, α) = 1

(2π)2

∫ ∞
0

∫ 2π

0
k90(z : k) exp{−ikρ cos(α − ψ)} dψdk (11a)

and

I1(z, ρ, α) = 1

(2π)2

∫ ∞
0

∫ 2π

0
k91(z : k) exp{−ikρ cos(α − ψ)} dψ dk. (11b)

And so it is clear that to obtain the radiation flux and current we should compute90(z : k)

and91(z : k) and then evaluate the inversion integrals given by Eqs. (11).

2. THE PSEUDO PROBLEM

Rather than trying to find90(z : k) and91(z : k) directly from the defining Eqs. (4) and
(5), we proceed as was done in previous works [4–6, 8] and base our analysis on the “pseudo
problem” that was used by Williams [14–16]. In order to see well the connection between
the problem defined by Eqs. (4) and (5) and Williams’ reduced problem, we deduce, first
of all, from Eqs. (4) and (5) that

9(z, µ, φ : k) = 9∗(z, µ, φ : k)+ $

4πµ

∫ z

0
90(z

′ : k) exp{−(z− z′)/U (µ, φ : k)} dz′

(12a)

and

9(z,−µ, φ : k) = $

4πµ

∫ z0

z
90(z

′ : k) exp{−(z′ − z)/U (µ, φ : k)} dz′ (12b)

for µ∈ (0, 1] and allφ. Here

9∗(z, µ, φ : k) = δ(µ− µ0)δ(φ − φ0) exp{−z/U (µ, φ : k)}, (13)

with

U (µ, φ : k) = µ/u(µ, φ : k). (14)

At this point we can follow Ref. [8] and integrate Eqs. (12) overµ andφ and add the
resulting two equations to obtain the integral equation

90(z : k) = F(z : k)+ $

2

∫ z0

0
K (|z′ − z| : k)90(z

′ : k) dz′, (15)

where90(z : k) is defined by Eq. (9a) and

F(z : k) = exp{−z/U0(k)} (16)
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with

U0(k) = µ0/u(µ0, φ0 : k). (17)

Here the kernel of the integral equation is

K (ξ : k) =
∫ 1

0
(1+ k2µ2)−1/2 exp

{
− ξ

µ
(1+ k2µ2)1/2

}
dµ

µ
. (18)

We note that the derivation of Eq. (15) is somewhat involved, but some helpful details
relevant to this computation are given in Ref. [8].

While Eq. (15) was derived from Eqs. (4) and (5), it was observed by Williams [14–16]
that the same integral equation can be obtained from what we call a pseudo problem. This
problem is defined by the equation of transfer

µ(1+ k2µ2)1/2 ∂

∂z
8(z, µ : k)+ (1+ k2µ2)8(z, µ : k)

= $

2

∫ 1

−1
8(z, µ′ : k) dµ′ + 1

2
F(z : k), (19)

for µ∈ [−1, 1] andz∈ (0, z0), and the boundary conditions

8(0, µ : k) = 0 (20a)

and

8(z0,−µ : k) = 0 (20b)

for µ∈ (0, 1]. We can now follow the same procedure we used to develop Eq. (15) to obtain
from Eqs. (19) and (20) the integral equation

8(z : k) = 1

2

∫ z0

0
K (|z′ − z| : k)[$8(z′ : k)+ F(z′ : k)] dz′, (21)

and so it follows that we can use

90(z : k) = F(z : k)+$8(z : k), (22)

where

8(z : k) =
∫ 1

−1
8(z, µ : k) dµ, (23)

to evaluate the right-hand side of Eq. (11a). Now, as discussed in Ref. [8], we can multiply
Eqs. (12) byµ, integrate overµ andφ, and subtract one of the resulting equations from the
other to find, after noting Eq. (9b),

91(z : k) = µ0F(z : k)+ $

2

∫ z0

0
sgn(z− z′)M(|z′ − z| : k)90(z

′ : k) dz′, (24)
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where

M(ξ : k) =
∫ 1

0
exp

{
− ξ

µ
(1+ k2µ2)1/2

}
dµ. (25)

Defining

4(z : k) =
∫ 1

−1
µ(1+ k2µ2)1/28(z, µ : k) dµ, (26)

we find from Eqs. (19) and (20) that

4(z : k) = 1

2

∫ z0

0
sgn(z− z′)M(|z′ − z| : k)[$Φ(z′ : k)+ F(z′ : k)] dz′, (27)

and so we conclude that

91(z : k) = µ0F(z : k)+$4(z : k) (28)

can be used to evaluate the right-hand side of Eq. (11b).
While it is very clear from Eqs. (1) and (2) that the uncollided component ofI (z,ρ, Ω)

is singular (it is a generalized function, to be more precise), it is not so evident that the once-
collided component ofI (z,ρ, Ω) also is, as was pointed out in Refs. [5–8], a generalized
function. And so, as a result of the singular nature of these two components ofI (z,ρ, Ω),
the desired solution, in earlier work [5–8], was split into three elements: the uncollided
beam, the once-collided term, and the remainder. In fact, this decomposition was considered
essential when an attempt was made to carry out a numerical evaluation of some required
Fourier-transform inversion integrals. In this work we seek to compute the flux and thez
component of the current and not the angular flux, and so this decomposition into three
elements is not necessary here. It follows that our basic job now is to develop the required
quantities that have been expressed in terms of the pseudo problem defined by Eqs. (16),
(19), and (20). As we wish to make use of some recent work with the discrete-ordinates
method we choose to rewrite Eqs. (19) and (20) in terms of new variables. If we let

(1+ k2µ2)8(z, µ : k) = 8̂(z, µ : k), (29a)

µ = ξ(1− k2ξ2)−1/2, (29b)

and

8̂[z, ξ(1− k2ξ2)−1/2 : k] = G(z, ξ : k) (29c)

then we can rewrite our problem as

ξ
∂

∂z
G(z, ξ : k)+ G(z, ξ : k) = $

2

∫ γ

−γ

φ(u : k)G(z, u : k) du+ 1

2
F(z : k), (30)

for z∈ (0, z0) andξ ∈ [−γ, γ ], with

G(0, ξ : k) = 0 (31a)
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and

G(z0,−ξ : k) = 0 (31b)

for ξ ∈ (0, γ ]. Here

γ = (1+ k2)−1/2 (32a)

and

φ(u : k) = (1− k2u2)−1/2. (32b)

Looking back to Eqs. (22) and (28), we can now write

90(z : k) = F(z : k)+$ L(z : k) (33a)

and

91(z : k) = µ0F(z : k)+$ H(z : k), (33b)

where

L(z : k) =
∫ γ

−γ

φ(ξ : k)G(z, ξ : k) dξ (34a)

and

H(z : k) =
∫ γ

−γ

ξφ3(ξ : k)G(z, ξ : k) dξ. (34b)

We see from Eqs. (11) and (33) that to complete our solution (at least in transform space)
we must find a good way to compute the quantitiesL(z : k) and H(z : k). In Ref. [8] a
version of theFN method [11] was used for this purpose. Here we develop the required
quantities in terms of a “half-range” discrete-ordinates solution of the “G problem” defined
by Eqs. (30)–(32).

3. A DISCRETE-ORDINATES SOLUTION

It is clear that theG problem we must solve depends on the transform variablek; however,
in order to avoid too much heavy notation we choose, in this (and the next) section, to
suppress the explicitk-dependent notation we have used to this point in our work. We note
from Eq. (16) thatF(z) is, in general, a complex function of a real variable, and so, of
course, the resultingG(z, ξ) is also a complex function. However, we can consider Eq. (30)
written as

ξ
∂

∂z
G(z, ξ)+ G(z, ξ) = $

2

∫ γ

−γ

φ(u)G(z, u) du+ Q(z), (35)

where we can takeQ(z) to be either the real or imaginary part ofF(z)/2 and thus can
obtain either the real or imaginary part ofG(z, ξ). Our development of a discrete-ordinates
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solution of Eq. (35) follows closely Ref. [12], and so we will be brief here. Sinceφ(u) is
an even function, we write our discrete-ordinates equations as

ξi
d

dz
G(z, ξi )+ G(z, ξi ) = $

2

N∑
k=1

wkφ(ξk)[G(z, ξk)+ G(z,−ξk)] + Q(z) (36a)

and

−ξi
d

dz
G(z,−ξi )+ G(z,−ξi ) = $

2

N∑
k=1

wkφ(ξk)[G(z, ξk)+ G(z,−ξk)] + Q(z) (36b)

for i = 1, 2, . . . , N. In writing Eqs. (36) as we have, we clearly are considering that theN
quadrature points{ξk} and theN weights{wk} are defined for use on the integration interval
[0, γ ]. Of course we are free to use a single quadrature scheme on the interval [0, γ ],
or we can use a composite quadrature defined over sub-intervals of [0, γ ]. Now seeking
exponential solutions of the homogeneous equations, we substitute

G(z,±ξi ) = φ(ν,±ξi ) exp{−z/ν} (37)

into the homogeneous versions of Eqs. (36) to find

1

ν
ΞΦ+ = (I −W)Φ+ −WΦ− (38a)

and

−1

ν
ΞΦ− = (I −W)Φ− −WΦ+, (38b)

whereI is theN× N identity matrix,

Φ± = [φ(ν,±ξ1), φ(ν,±ξ2), . . . , φ(ν,±ξN)]T, (39)

the elements of theW matrix are given by

(W)i, j = $

2
w j φ(ξ j ) (40)

and

Ξ = diag{ξ1, ξ2, . . . , ξN}. (41)

If we let

U = Φ+ +Φ− (42)

and

V = Φ+ −Φ− (43)
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then we can eliminateV between the sum and the difference of Eqs. (38) to find

(Ξ−2− 2Ξ−1WΞ−1)ΞU = 1

ν2
ΞU, (44)

where to haveΞ−1 exist we cannot allow any of the quadrature points to be zero. Multiplying
Eq. (44) by the diagonal matrixT with the diagonal elements given by

Ti =
[
$

2
wi φ(ξi )

]1/2

(45)

we can makeTWT−1 symmetric so we can rewrite Eq. (44) as

(D− zzT )X = λX, (46)

where

D = diag
{
ξ−2

1 , ξ−2
2 , . . . , ξ−2

N

}
, (47)

X = T4U, (48)

z =
[√

$w1φ(ξ1)

ξ1
,

√
$w2φ(ξ2)

ξ2
, . . . ,

√
$wNφ(ξN)

ξN

]T

, (49)

andλ= 1/ν2. We note that the eigenvalue problem defined by Eq. (46) is of a form that
is encountered when the so-called “divide and conquer” method [17] is used to find the
eigenvalues of tridiagonal matrices. This special eigenvalue problem has been discussed
in Ref. [18], and a special numerical package DZPACK has been made available [18] for
dealing with this eigenvalue problem.

Considering that we have found the required eigenvalues from Eq. (46), we impose the
normalization condition

N∑
k=1

wkφ(ξk)[φ(ν, ξk)+ φ(ν,−ξk)] = 1 (50)

so that we can write our discrete-ordinates solution as

Gh(z,±ξi ) =
N∑

j=1

[ Aj φ(ν j ,±ξi ) exp{−z/ν j } + Bj φ(ν j ,∓ξi ) exp{−(z0− z)/ν j }] (51)

with

φ(ν j ,±ξi ) = $

2

ν j

ν j ∓ ξi
. (52)

The arbitrary constants{Aj } and{Bj } in Eq. (51) are to be determined from the boundary
conditions, and the separation constants{ν j } are the reciprocals of the positive square roots
of the eigenvalues defined by Eq. (46). We note also that we have added the subscripth to
remind us that the solution given by Eq. (51) applies only to the homogeneous versions of
Eqs. (36).
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Since Eqs. (36) have the inhomogeneous source termQ(z) we must add a particular
solution toGh(z, ± ξi ) to obtain the complete solution. Seeking a particular solution of the
form

Gp(z,±ξi ) = B(±ξi ) exp{−z/U0}, (53)

we find from Eqs. (36)

Gp(z,±ξi ) = 1

2Ä(U0)

U0

U0∓ ξi
exp{−z/U0}, (54)

where

Ä(U0) = 1+$0(U0) (55)

with

0(U0) = U2
0

N∑
α=1

wαφ(ξα)

ξ2
α −U2

0

. (56)

We now write our complete solution as

G(z,±ξi ) = Gh(z,±ξi )+ Gp(z,±ξi ), (57)

where the arbitrary constantsAj andBj required in Eq. (51) are defined by the system of
linear algebraic equations obtained when we substitute Eq. (57) into Eqs. (31) evaluated at
the quadrature points, viz.

N∑
j=1

[
Aj φ(ν j , ξi )+ Bj φ(ν j ,−ξi )e

−z0/ν j
] = −Gp(0, ξi ) (58a)

and

N∑
j=1

[
Bj φ(ν j , ξi )+ Aj φ(ν j ,−ξi )e

−z0/ν j
] = −Gp(z0,−ξi ) (58b)

for i = 1, 2, . . . , N. Once we have solved Eqs. (58) we can use Eq. (57) in our discrete-
ordinates versions of Eqs. (34), viz.

L(z) =
N∑

k=1

wkφ(ξk)[G(z, ξk)+ G(z,−ξk)] (59a)

and

H(z) =
N∑

k=1

wkξkφ
3(ξk)[G(z, ξk)− G(z,−ξk)] (59b)
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to find

L(z) =
N∑

j=1

[ Aj exp{−z/ν j } + Bj exp{−(z0− z)/ν j }] + L p(z) (60a)

and

H(z) = (1−$ K )

N∑
j=1

ν j φ
2(ν j )[ Aj exp{−z/ν j }−Bj exp{−(z0−z)/ν j }]+Hp(z), (60b)

where

L p(z) = − 0(U0)

Ä(U0)
exp{−z/U0} (61a)

and

Hp(z) = U0[K + 0(U0)]

Ä(U0)
(
k2U2

0 − 1
) exp{−z/U0}. (61b)

In addition

K =
N∑

k=1

wkφ
3(ξk). (62)

We note that we typically have usedK = 1 in Eqs. (60b) and (61b) which, strictly speaking,
is true only if the quadrature scheme used in Eq. (62) evaluatesK exactly.

4. POST PROCESSING

While Eqs. (60) and (61) provide expressions we can readily evaluate to find the functions
L(z) and H(z) required to complete Eqs. (33), we can also use the idea [19] of “post
processing” to define alternative results. If we use Eq. (59a) to replace the integral term in
Eq. (35), we can then solve the resulting equation to find

G(z,−ξ) = 1

ξ

∫ z0

z

[
$

2
L(x)+ Q(x)

]
exp{−(x − z)/ξ} dx (63a)

and

G(z, ξ) = 1

ξ

∫ z

0

[
$

2
L(x)+ Q(x)

]
exp{−(z− x)/ξ} dx (63b)

for all ξ ∈ (0, γ ]. SinceL(z), as given by Eqs. (60a) and (61a), andQ(z) are defined by
exponentials, we can integrate Eqs. (63) to find

G(z,−ξ) = U0

2Ä(U0)
exp{−z/U0}S(z0− z : U0, ξ)+ $

2
ϒ(z,−ξ) (64a)
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and

G(z, ξ) = U0

2Ä(U0)
C(z : U0, ξ)+ $

2
ϒ(z, ξ), (64b)

where

ϒ(z,−ξ) =
N∑

j=1

ν j [ Aj exp{−z/ν j }S(z0− z : ν j , ξ)+ Bj C(z0− z : ν j , ξ)] (65a)

and

ϒ(z, ξ) =
N∑

j=1

ν j [ Aj C(z : ν j , ξ)+ Bj exp{−(z0− z)/ν j }S(z : ν j , ξ)] . (65b)

In addition, theSandC functions are given by

S(z : x, y) = 1− e−z/xe−z/y

x + y
(66a)

and

C(z : x, y) = e−z/x − e−z/y

x − y
. (66b)

Now since Eqs. (64) are valid for continuous values ofξ they can be used in

L(z) =
∫ γ

0
φ(ξ)[G(z, ξ)+ G(z,−ξ)] dξ (67a)

and

H(z) =
∫ γ

0
ξφ3(ξ)[G(z, ξ)− G(z,−ξ)] dξ (67b)

to yield post-processed results forL(z) andH(z). To evaluate Eqs. (67) we can, as suggested
by Nelson [20], use different quadrature rules forL(z) andH(z), and so we can write

L(z) =
Na∑

α=1

aαφ(ηα)[G(z, ηα)+ G(z,−ηα)] (68a)

and

H(z) =
Nb∑

α=1

bαζαφ3(ζα)[G(z, ζα)− G(z,−ζα)], (68b)

where theNa weights and nodes{aα, ηα} and theNb weights and nodes{bα, ζα} define
two quadrature rules for use on the integration interval [0, γ ]. We consider Eqs. (68) to be
viable alternatives to Eqs. (60) especially since we are free to use convenient quadrature
schemes to evaluate these expressions. We postpone a discussion of the numerical aspects
of our computation until Section 6 where we make some additional comments concerning
the relative merits of Eqs. (60) and (68).

Considering that we have solved our problem in transform space, we proceed to carry
out the necessary inversions to find the results we seek.
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5. THE FOURIER INVERSION

Having defined our solution of the pseudo problem, we consider thatL(z : k) andH(z : k),
as defined by Eqs. (60) or Eqs. (68), are available, and so we are ready to evaluate the Fourier
inversion integrals to find the radiation fluxes and the radiation currents we seek. Note that
we now indicate (again) more explicitly the dependence of various quantities on the Fourier-
transform variablek. While our analysis to this point has been general, we now restrict our
computation to the special case of normal incidence (µ0= 1) where one of the inversion
integrals can be evaluated analytically. Here, sinceµ0= 1 and thusU0(k)= 1, the transforms
90(z : k) and91(z : k) are independent of the angleψ , and so we rewrite Eqs. (11) as

Iβ(z, ρ) = 1

2π

∫ ∞
0

9β(z : k)J0(kρ)k dk (69)

for β = 0 or 1. Of course, we are usingJ0(x) to denote the first Bessel function of the
first kind [21], and we are replacingk with k in our notation. Continuing, we now rewrite
Eqs. (33) as

90(z : k) = exp{−z} +$ L(z : k) (70a)

and

91(z : k) = exp{−z} +$ H(z : k). (70b)

Next we can substitute Eqs. (70) into Eq. (69) to find

I0(z, ρ) = δ(ρ)

2πρ
exp{−z} + $

2π
J(z, ρ) (71a)

and

I1(z, ρ) = δ(ρ)

2πρ
exp{−z} + $

2π
F(z, ρ), (71b)

where

J(z, ρ) =
∫ ∞

0
L(z : k)J0(kρ)k dk (72a)

and

F(z, ρ) =
∫ ∞

0
H(z : k)J0(kρ)k dk. (72b)

We note that the quantitiesJ(z, ρ) andF(z, ρ), which we rewrite as

J(z, ρ) = 1

ρ2

∫ ∞
0

x L(z : x/ρ)J0(x) dx (73a)

and

F(z, ρ) = 1

ρ2

∫ ∞
0

x H(z : x/ρ)J0(x) dx, (73b)
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have been expressed in terms of our solution to theG problem, i.e., in terms ofL(z : k)

and H(z : k), and so are considered available, if not yet evaluated. Before proceeding to
our numerical work we note that Eqs. (71) can be used as Green’s functions and thus are
defined, in a sense, for allρ; however, those equations make sense numerically only for
ρ > 0.

6. NUMERICAL RESULTS

Before discussing some details concerning the way we have implemented our solution to
theG problem, we comment on the way we evaluated Eqs. (73) once the functionsL(z : k)

andH(z : k) were available. Having found that the integrands in Eqs. (73) oscillate about
zero, we followed the work of Longman [22] and made use of an Euler transformation [23] to
evaluate these difficult integrals numerically. To review the mentioned Euler transformation,
consider the infinite series

S=
∞∑

n=0

(−1)nVn, (74)

whereVn > 0 andVn+1 < Vn for all n. The Euler transformation allows us to rewriteSas

S=
∞∑

n=0

1

2n+1
(−1)n1nV0, (75)

where

10Vn = Vn, (76a)

1Vn = Vn+1− Vn, (76b)

12Vn = 1Vn+1−1Vn, (76c)

and, in general,

1r+1Vn = 1r Vn+1−1r Vn. (76d)

We choose to use the binomial coefficientsB(i, j ), j = 1, 2, . . . , i + 1, to express the terms
in Eq. (75) in the form

1nV0 =
n+1∑
j=1

(−1) j−1B(n, j )Vn+1− j . (77)

It follows [22, 23] that if the series defined by Eq. (74) converges, then so does the series
defined by Eq. (75). In addition, and importantly for us here, when Eqs. (74) and (75) are
approximated by a finite number of terms, then the resulting sum from Eq. (75) can yield a
much more accurate result.

To test this idea of Longman (based, of course, on the Euler transformation) we considered
the test quantity

E = 1−
∫ ∞

0
J0(x) dx. (78)
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We approximated the infinite integration interval in Eq. (78) by a finite number of subinter-
vals defined by the zeros ofJ0(x) and used integrals (we used a Gauss–Legendre quadrature
scheme for each subinterval) over these subintervals to define theVn in Eq. (74). Using as
many as, say, 50 of the defined subintervals, we could get|E| from Eq. (74) to be no smaller
than, say, 10−3. But from Eq. (75) we found|E| as small as 10−13 using this same number
of subintervals (or fewer).

Focusing our attention now on some of the computational details concerning the imple-
mentation of our discrete-ordinates solution of theG problem defined by Eqs. (30) and (31),
we consider that the first thing we must do is to define a quadrature scheme. In that regard,
we consider it important to note that the formulation of our discrete-ordinates solution is
essentially independent of the quadrature scheme to be used. The only two restrictions we
have imposed are that theN quadrature points{ξk} and theN weights{wk}must be defined
for use on the integration interval [0, γ ] and, because of the way our basic eigenvalue prob-
lem is formulated, that we must exclude zero from the set of quadrature points. Of course
to exclude zero from the quadrature set is not considered a serious restriction since typical
Gauss quadrature schemes do not include the end points of the integration interval.

To see a “reason” for using the quadrature scheme we have used in this work, we consider
an integral of a form suggested by a “half-range” version of the integral term in Eq. (30),
viz.

I =
∫ γ

0
φ(ξ : k)F(ξ) dξ, (79)

which we immediately rewrite as

I = γ

∫ 1

0
φ(γ x : k)F(γ x) dx. (80)

Here, we note Eqs. (32) and write

φ(γ x : k) = 1

(1− r 2x2)1/2
, (81)

where

r = k

(1+ k2)1/2
. (82)

It is clear that asr approaches 1 (large values ofk) a linear mapping of a Gauss–Legendre
scheme onto the interval [0, 1] is not going to work well for evaluating our considered
integral. And so we letx= g(y), with g(0)= 0, and rewrite Eq. (80) as

I = γ

∫ u

0
φ[γg(y) : k]F [γg(y)]g′(y) dy, (83)

whereg(u)= 1. We now set

γg′(y) = [1− r 2g(y)2]
1/2

(84)
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and solve forg(y) andu to obtain

g(y) = 1

r
sin

(
r y

γ

)
and u = γ

r
arcsin(r ). (85)

At this point we consider that we haveN Gauss–Legendre weights and nodes{ŵα, x̂α}
that have been mapped (linearly) onto the integration interval [0, 1], and so we write our
quadrature version of Eq. (79) as

I =
N∑

α=1

wα F(ξα), (86)

where

wα = uŵα (87a)

and

ξα = γg(ux̂α). (87b)

So our discrete-ordinates solution of theG problem is based on theN weights and nodes
defined by Eqs. (87).

Having defined our quadrature scheme, we have used the package DZPACK [18] to find
the eigenvalues{λ j } from the eigenvalue problem defined by Eq. (46). The required separa-
tion constants were then available as the reciprocals of the square roots of these eigenvalues.
We then used the subroutines DGECO and DGESL from the LINPACK package [24] to
solve the linear system defined by Eqs. (58), and so the solution to theG problem was
considered established.

In order to test our discrete-ordinates solution to the classical searchlight problem, we
consider the particular case solved by theFN method in Ref. [8], viz. we consider the case of
a beam normally incident (µ0= 1) on a finite slab of optical thicknessz0= 1 with $ = 0.8.
Our results are given, with what we believe to be five figures of accuracy, in Tables I and II.

Of course, we have carried out numerous numerical experiments to establish the con-
fidence we have in our discrete-ordinates solution, and in comparing Tables I and II with
the same tables from Ref. [8], we have found only one case that differed by more than one
unit in the fifth figure reported [8.8949(–2) vs 8.8956(–2)]. This difference was found for
what we consider the most difficult case: the radiation current calculation forρ= 0.001 and
z= 0.1. In the process of evaluating the numerical results obtained from our FORTRAN
implementation of the discrete-ordinates solution developed here, we saw again a situation
that deserves comment. For the radiation current calculation, in contrast to the flux calcu-
lation, the result can be positive, negative, and, in fact, zero. And so there clearly will be
certain values of the independent variables for which a numerical computation (carried out
on a machine with a finite word length) can yield values for which none of the figures are
correct. While we may think of these special cases as truly exceptional, we must at the same
time not take all suggestions of achieved accuracy to be definitive statements.

In regard to the computation of the functionsL(z : k) andH(z : k) required for the Fourier
inversion, we note that the simpler representations given by Eqs. (60) worked very well for
all but, say, the two smallest of the considered values ofρ. To have the results with five
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TABLE I

The Radiation Flux I 0(ηz0,ρ) for z0 = 1.0,$ = 0.8, andµ0 = 1.0

ρ η= 0 η= 0.05 η= 0.1 η= 0.2 η= 0.5 η= 0.75 η= 1

0.001 9.9687(1) 1.8940(2) 1.8083(2) 1.6396(2) 1.2164(2) 9.4723(1) 3.7008(1)
0.010 9.7637 1.7924(1) 1.7703(1) 1.6356(1) 1.2291(1) 9.5620 3.8185
0.100 8.4077(−1) 1.1361 1.3086 1.4089 1.1991 9.2630(−1) 4.2588(−1)
0.200 3.6477(−1) 4.4620(−1) 5.0743(−1) 5.7604(−1) 5.4481(−1) 4.2286(−1) 2.1656(−1)
0.400 1.3991(−1) 1.6123(−1) 1.7785(−1) 2.0195(−1) 2.1090(−1) 1.7022(−1) 1.0015(−1)
0.600 7.2196(−2) 8.1428(−2) 8.8471(−2) 9.9110(−2) 1.0661(−1) 8.9826(−2) 5.7469(−2)
0.800 4.2094(−2) 4.6948(−2) 5.0567(−2) 5.6058(−2) 6.0809(−2) 5.2919(−2) 3.5779(−2)
1.000 2.6269(−2) 2.9097(−2) 3.1167(−2) 3.4295(−2) 3.7280(−2) 3.3174(−2) 2.3298(−2)
1.200 1.7130(−2) 1.8887(−2) 2.0154(−2) 2.2058(−2) 2.3981(−2) 2.1669(−2) 1.5634(−2)
1.400 1.1523(−2) 1.2663(−2) 1.3476(−2) 1.4692(−2) 1.5964(−2) 1.4581(−2) 1.0729(−2)
1.600 7.9341(−3) 8.6977(−3) 9.2373(−3) 1.0041(−2) 1.0902(−2) 1.0036(−2) 7.4936(−3)
1.800 5.5627(−3) 6.0867(−3) 6.4543(−3) 7.0001(−3) 7.5946(−3) 7.0314(−3) 5.3094(−3)
2.000 3.9573(−3) 4.3237(−3) 4.5792(−3) 4.9575(−3) 5.3745(−3) 4.9978(−3) 3.8072(−3)
2.200 2.8490(−3) 3.1092(−3) 3.2896(−3) 3.5562(−3) 3.8527(−3) 3.5949(−3) 2.7577(−3)
2.400 2.0718(−3) 2.2587(−3) 2.3879(−3) 2.5782(−3) 2.7915(−3) 2.6117(−3) 2.0149(−3)
2.600 1.5194(−3) 1.6552(−3) 1.7486(−3) 1.8861(−3) 2.0409(−3) 1.9137(−3) 1.4833(−3)
2.800 1.1225(−3) 1.2219(−3) 1.2902(−3) 1.3904(−3) 1.5037(−3) 1.4125(−3) 1.0991(−3)
3.000 8.3450(−4) 9.0791(−4) 9.5815(−4) 1.0318(−3) 1.1154(−3) 1.0493(−3) 8.1920(−4)
4.000 2.0375(−4) 2.2122(−4) 2.3307(−4) 2.5035(−4) 2.7012(−4) 2.5532(−4) 2.0153(−4)
5.000 5.4060(−5) 5.8629(−5) 6.1708(−5) 6.6182(−5) 7.1317(−5) 6.7579(−5) 5.3665(−5)

TABLE II

The Radiation Current I1(ηz0,ρ) for z0 = 1.0,$ = 0.8, andµ0 = 1.0

ρ η= 0 η= 0.05 η= 0.1 η= 0.2 η= 0.5 η= 0.75 η= 1

0.001 −6.3217(1) −5.5479(−1) 8.8949(−2) 3.7952(−1) 4.4737(−1) 4.2432(−1) 2.3563(1)
0.010 −6.0631 −8.0834(−1) −1.7275(−1) 1.4020(−1) 2.6978(−1) 2.8594(−1) 2.4292
0.100 −4.7074(−1) −3.7797(−1) −2.4177(−1) −6.1321(−2) 9.5914(−2) 1.4392(−1) 2.6473(−1)
0.200 −1.9033(−1) −1.6963(−1) −1.3636(−1) −6.4882(−2) 4.9976(−2) 9.4158(−2) 1.3034(−1)
0.400 −6.5932(−2) −6.0425(−2) −5.3057(−2) −3.4794(−2) 1.6980(−2) 4.4123(−2) 5.6066(−2)
0.600 −3.1437(−2) −2.8851(−2) −2.5732(−2) −1.8235(−2) 6.6958(−3) 2.2312(−2) 2.9825(−2)
0.800 −1.7167(−2) −1.5717(−2) −1.4061(−2) −1.0224(−2) 2.9517(−3) 1.2089(−2) 1.7259(−2)
1.000 −1.0138(−2) −9.2563(−3) −8.2814(−3) −6.0868(−3) 1.4202(−3) 6.9498(−3) 1.0510(−2)
1.200 −6.3099(−3) −5.7477(−3) −5.1392(−3) −3.7982(−3) 7.3166(−4) 4.1954(−3) 6.6435(−3)
1.400 −4.0799(−3) −3.7097(−3) −3.3148(−3) −2.4583(−3) 3.9791(−4) 2.6353(−3) 4.3262(−3)
1.600 −2.7157(−3) −2.4659(−3) −2.2023(−3) −1.6371(−3) 2.2604(−4) 1.7094(−3) 2.8865(−3)
1.800 −1.8494(−3) −1.6775(−3) −1.4976(−3) −1.1153(−3) 1.3307(−4) 1.1382(−3) 1.9652(−3)
2.000 −1.2829(−3) −1.1627(−3) −1.0376(−3) −7.7387(−4) 8.0708(−5) 7.7433(−4) 1.3609(−3)
2.200 −9.0339(−4) −8.1822(−4) −7.3004(−4) −5.4510(−4) 5.0192(−5) 5.3620(−4) 9.5601(−4)
2.400 −6.4424(−4) −5.8319(−4) −5.2024(−4) −3.8882(−4) 3.1891(−5) 3.7686(−4) 6.7990(−4)
2.600 −4.6435(−4) −4.2017(−4) −3.7475(−4) −2.8030(−4) 2.0641(−5) 2.6822(−4) 4.8867(−4)
2.800 −3.3776(−4) −3.0551(−4) −2.7245(−4) −2.0392(−4) 1.3576(−5) 1.9296(−4) 3.5446(−4)
3.000 −2.4762(−4) −2.2391(−4) −1.9966(−4) −1.4952(−4) 9.0570(−6) 1.4010(−4) 2.5917(−4)
4.000 −5.7322(−5) −5.1778(−5) −4.6150(−5) −3.4621(−5) 1.4082(−6) 3.1342(−5) 5.9338(−5)
5.000 −1.4673(−5) −1.3246(−5) −1.1803(−5) −8.8619(−6) 2.6435(−7) 7.8622(−6) 1.5076(−5)
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figures of accuracy for these two small values ofρ we found it expedient to use the post-
processed results given by Eqs. (68). We note that we typically usedNa= Nb when using
Eqs. (68), and since Eq. (68a) is of the form considered in Eq. (79) we used weights and
nodes as defined by Eqs. (87) for this calculation. Finally, since Eq. (68b) has the factor
φ3(ζ ) we developed a special quadrature scheme, in the same spirit as was used to define
Eqs. (87), for use in computingH(z : k) from the post-processed expression.

To have some idea about the computational parameters we have used in this work we let
z2 denote the total number of loops ofJ0(x) we have considered in Eqs. (73). We also let
z1 denote the number of loops used before the Euler transformation is invoked to accelerate
the converge of the Fourier inversion calculation. Continuing we note that in evaluating the
integrals over the various loops defined by the zeros ofJ0(x) we typically subdivided each
integration interval into four subintervals and used, say,Nk Gauss–Legendre quadrature
points mapped linearly onto each of the subintervals. Finally to have some idea about the
computational parameters we have used to obtain the results given in Tables I and II, we
note that we have used, for example,N= 50, Nk= 10,z1= 75, andz2= 87 for all but the
smallest two values ofρ. On the other hand, for the smallest two values ofρ we considered,
we have used, for example,N= 20,Nk= 50,z1= 5, andz2= 17 withNa= 80 andNb= 80.

Concerning the computational time required to obtain the results reported in Tables I
and II, we note, first of all, that only a modest effort has been made to make our FORTRAN
implementation of the developed solution efficient as far as speed is concerned. Having
said that, we can say that our computations (defined by the parameters mentioned in the
foregoing paragraph) that yielded the results given in Tables I and II required 77 minutes
(split approximately equally between the two smallest values ofρ and the remaining 18
values ofρ) on a 400 MHz Pentium-based computer. Needless to say, the process of solving
an equation of transfer in Fourier-transform space and carrying out a numerical inversion
can be considered a computationally intensive task; however, we consider that we have
solved well a difficult problem basic to the theory of radiative transfer.

7. CONCLUDING REMARKS

Of course we would like to comment on the way we see this work as a valuable alternative
to Ref. [8]. First of all the discrete-ordinates solution developed here does not require any
experience with the theory of singular-integral equations, and so we consider this work
more readily accessible to many workers in the field of radiative transfer. In addition the
solution developed here is not subdivided into three components (the uncollided, the once
collided, and the rest), as was done earlier [8], and so some of the analysis is simpler.

While we have not attempted to evaluate our solution for the case of a non-normally
incident beam, it is clear that our solution of theG problem requires very little modification
for that case. The main challenge for the case of non-normal incidence is the task of
evaluating two-dimensional Fourier-inversion integrals; Refs. [9, 10] discuss this case for
a semi-infinite (z0→∞) medium.

We consider it worthwhile to mention that we have seen again in this work how very
important the choice of the quadrature scheme used to solve the equation of transfer can be.
In this regard, we note that in addition to the special-purpose quadrature set summarized by
Eqs. (87), we have also used other linear and non-linear maps to define integration schemes.
While we generally found good results using these other quadrature schemes forρ ≥ 0.1,
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we found our best results forρ < 0.1 by using Eqs. (87) to define our discrete-ordinates
solution of the equation of transfer. Finally, we have seen in this work the interesting (at
least to us) situation where one of the quantities, viz.H(z), we wished to compute was
well evaluated by using a second special-purpose quadrature scheme in the relevant post-
processing expression, i.e., Eq. (68b).
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