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Aversion ofthe discrete-ordinates method recently developed for radiative-transfer
calculations is used along with numerical linear-algebra techniques and two-dimen-
sional Fourier-transform procedures to establish the radiation flux aractivapo-
nent of the radiation current at all locations in a finite plane-parallel layer irradiated
by a beam incident only at one point on one surface. In addition to a general for-
mulation basic to a beam that is incident at an oblique angle, for which the flux
and current depend on three spatial variables, the Fourier transforms of the flux and
current are inverted numerically for the two-dimensional case relevant to a normally
incident beam. The reported numerical procedures, while computationally intensive,
are thought to yield, for the considered test case, the radiation flux and the normal
component of the radiation current with five figures of accura@y2000 Academic Press

1. INTRODUCTION

One has to admit that the classical searchlight problem defined in the field of radiati
transfer by Chandrasekhar [1] some 40 years ago still today represents a problem in parti
transport theory that is sufficiently difficult that very few high-quality computational result
have been reported. In regard to early papers devoted to problems somewhat related
searchlight problem, we consider that Elliott [2], who based his analysis on two-dimensiol
Fourier-transform procedures, defined the approach that has led to the (limited quantity
semi-analytical results in existence today. We note that Rybicki [3] has given an extens
review of early work devoted explicitly to the searchlight problem. As for more recer
efforts, we can say, to the best of our knowledge, that Refs. [4—8] are the ones most dire
related to our work here. As did Elliott [2], we use two-dimensional Fourier-transforn
techniques, and while much can be done in transform space, we consider that without
evaluation of the required inversion integrals the job is in no way complete. It is for th
reason that we consider Refs. [6, 8—10] to be particularly significant.

The solution developed here has very much in common with Ref. [8], but instead
basing our solution to a certain “pseudo problem” onflgemethod [11] we make use of
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708 BARICHELLO AND SIEWERT

some recent work [12, 13] with the discrete-ordinates method in order to provide a ne
alternative solution.
The searchlight problem we consider is defined by the equation of transfer

/Lil(z,p,ﬂ)—i—cwil(z,p,ﬂ)—i—l(z,p,ﬂ):E//I(Z,p,ﬂ/)dﬂ/, (1)
0z ap 4

for all z, p, and(?, and the boundary conditions

1
1[0, p, (i, )] = HMP)(S(M — 10)d(¢ — ¢o) (2a)
and

for u € (0, 1] and¢ €0, 2]. We follow closely the notation of Rybicki [3] and note that
z€|[0, zo] andp, which liesin thex-y plane, locate (in terms of mean free paths) the positior
in the layer and tha®(u, ¢), with u = cosé, is a unit vector that defines the direction of
propagation (see Fig. 1). In additian,is the projection of2 in the x-y plane,Q (o, ¢o)
defines the direction of the incident beam, and< 1 is the mean number of secondary
particles per collision.

Considering that Egs. (1) and (2) define our basic problem, we seek to compute
radiation flux

lo(z. p) = / / | (2. p. ) d2 (3a)
and thez component of the radiation current
szp) = [ [ul@p.dn (3b)
z
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FIGURE 1
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for ze [0, zp] and all p of interest. Continuing to follow previously mentioned works, we
letk, given in terms ok = |k| andy (see Fig. 1), define our transform vector so that we car
take a two-dimensional Fourier transform of Egs. (1) and (2) to find the transfer equati
(in transform space)

9 o 1 2
ua*‘l’(z,uwﬁik)+uw,¢:k)‘l/(z,u,¢ik)=f/ / V(z, u',¢" k)de du,
z 4 —1Jo

(4)
for ze (0, zp), u € [—1, 1] and all¢, and the boundary conditions
WO, u, ¢ :K) =58(u — no)d (@ — ¢o) (5a)
and
W (zo, —p, ¢:K) =0 (5b)
for € (0, 1] and¢ € [0, 27]. Here
u(u, ¢:k) = 1—ik(l - pu?)"*cos¢p — ) 6)
and
Wz, u,¢:k) = // I (z, p, Q) explik - p} dp. ©)
We can also take the Fourier transform of Egs. (3) to obtain
// lo(z, p) explik - p}dp = Yp(z: k) (8a)
and
// l1(z, p) explik - p}dp = W1(z: k), (8b)
where
1 p2n
Yo(z: k) = [1/0 W(z, u, ¢:K)dpdu (9a)
and
1 p2n
Yy(z: k) = /_1/0 u¥(z, 1, ¢ K dpdu. (9b)

Of course once we havy(z: k) andW(z: k) the radiation flux and the component of
the radiation current are available, at least in principle, from the inversion integrals

1

lo(z, p) = W

// Wo(z: k) exp{—ik - p} dk (10a)
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and
1 .
l1(z, p) = ) // Wy(z: k) exp{—ik - p} dk (10b)
or
1 oo 21
lo(Z, p,a) = —— / kWo(z: k) exp{—ikp coa — ¥)} dyrdk (11a)
27)2 Jo Jo
and
oo 21
11(z, p, @) = i / kWwi(z: k) exp{—ikp coda — y)}dyrdk.  (11b)
27)? Jo Jo

And so it is clear that to obtain the radiation flux and current we should conigyfte k)
andW,(z: k) and then evaluate the inversion integrals given by Egs. (11).

2. THE PSEUDO PROBLEM

Rather than trying to find/g(z: k) andW1(z: k) directly from the defining Eqgs. (4) and
(5), we proceed as was done in previous works [4—6, 8] and base our analysis on the “pse
problem” that was used by Williams [14-16]. In order to see well the connection betwee
the problem defined by Egs. (4) and (5) and Williams’ reduced problem, we deduce, fi
of all, from Egs. (4) and (5) that

Wz, K) = W, (Z, 1, b K) + 4£ / Wo(Z  K) expl—(z — Z)/U (u, ¢ - K)} dZ
TU Jo
(12a)
and
o 20
W(z, —p, K = 4—/ Wo(Z :kyexp{—(Z —2)/U (u, ¢ : k)} dZ (12b)
T Jz
for u € (0, 1] and allg. Here
W (Z, p, 1K) = 8(1 — 10)d(¢ — o) exp{—2z/U (i, ¢ 1 K)}, (13)
with
U, ¢:K) = p/u(u, ¢:K). (14)

At this point we can follow Ref. [8] and integrate Eqs. (12) oyeand¢ and add the
resulting two equations to obtain the integral equation

2
Wo(z: K) = F(z:K) + %/ K(IZ — 2| : k) Wo(Z : k) dZ, (15)
0

whereWy(z: k) is defined by Eq. (9a) and

F(z: k) = exp{—z/Up(k)} (16)
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with

Uo(K) = wo/u(uo, ¢o:K). (17)

Here the kernel of the integral equation is

. ! 2 2\-1/2 § 2 2\1/2 du
K(E-k)=/(1+ku) eXp{——(1+ku) }—. (18)
0 7 M
We note that the derivation of Eqg. (15) is somewhat involved, but some helpful deta
relevant to this computation are given in Ref. [8].
While Eq. (15) was derived from Egs. (4) and (5), it was observed by Williams [14—1¢

that the same integral equation can be obtained from what we call a pseudo problem.
problem is defined by the equation of transfer

pn(l+ k%%”%@(z, wiK) + (14 Kud)d(z, w:k)

:w/l q)(z,u’:k)du’+}F(z:k), (19)
2 /4 2
for u e[—1, 1] andz € (0, z), and the boundary conditions
®O, u:k) =0 (20a)
and
d(z9, —u:k) =0 (20b)

for u € (0, 1]. We can now follow the same procedure we used to develop Eq. (15) to obta
from Egs. (19) and (20) the integral equation

1 4]
P(z:k) = é/ K(Z — z]: K[z ®(Z : k) + F(Z:k)]dZ, (21)
0
and so it follows that we can use

Wo(z:K) = F(z:k) + mw®(z: k), (22)

where

1
®d(z:k) = / ®D(z, w:Kk)du, (23)
-1

to evaluate the right-hand side of Eq. (11a). Now, as discussed in Ref. [8], we can multij
Egs. (12) byu, integrate over ande, and subtract one of the resulting equations from the
other to find, after noting Eq. (9b),

2
Wi(z: k) = uoF(z: k) + % / sgNz — Z)M(|Z — z|: KWo(Z : k) dZ, (24)
0
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where
! 3
M(E : K) =/ exp{—(1+ kzuz)l/z} du. (25)
0 i
Defining
1
E(z:k):/ nd+K2u?)Y2d(z, i k) du, (26)
-1

we find from Eqgs. (19) and (20) that

2o
E(z:k) = %/ sgNz— Z)M(|Z — z|: K[ ®(Z : k) + F(Z : k)] dZ, 27)
0

and so we conclude that
Wi(z:k) = uoF(z: k) + mE(z: k) (28)

can be used to evaluate the right-hand side of Eq. (11b).

While it is very clear from Egs. (1) and (2) that the uncollided componeh{afp, €2)
is singular (it is a generalized function, to be more precise), it is not so evident that the on
collided component of (z, p, Q) also is, as was pointed out in Refs. [5-8], a generalizec
function. And so, as a result of the singular nature of these two componehts, gf, 2),
the desired solution, in earlier work [5-8], was split into three elements: the uncollide
beam, the once-collided term, and the remainder. In fact, this decomposition was conside
essential when an attempt was made to carry out a numerical evaluation of some requ
Fourier-transform inversion integrals. In this work we seek to compute the flux armd the
component of the current and not the angular flux, and so this decomposition into thi
elements is not necessary here. It follows that our basic job now is to develop the requi
guantities that have been expressed in terms of the pseudo problem defined by EQs. (
(19), and (20). As we wish to make use of some recent work with the discrete-ordinat
method we choose to rewrite Egs. (19) and (20) in terms of new variables. If we let

A+ Ku) @z, i k) = D(z, 1K), (29a)
p=EL—KEH2, (29b)

and
D[z, &(1— k%) Y21 K] = G(z,£ : k) (29c)

then we can rewrite our problem as
ad o [V 1
éa—ZG(z,s:k) + Gz &:k = 7/ ¢U:k)G(z, u:k)du + EF(z: k), (30)
v

for ze (0, zp) andé e[—y, y], with

G0,&£:ky=0 (31a)
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and
G(zg,—€:k=0 (31b)
for & € (0, y]. Here
y=1+k) 12 (32a)
and
du:k) = (1 —KkudV2 (32b)

Looking back to Egs. (22) and (28), we can now write

Wo(z:K) = F(z:K) + wL(z:k) (33a)
and
Wy(z:K) = uoF(z: k) + w H(z: k), (33b)
where
Lz = [ g oms (342)
and
Hz: k) = /_ yy £6%(E Gz, £ 1K) k. (34b)

We see from Egs. (11) and (33) that to complete our solution (at least in transform spa
we must find a good way to compute the quantitigg: k) and H(z: k). In Ref. [8] a
version of theFy method [11] was used for this purpose. Here we develop the require
guantities in terms of a “half-range” discrete-ordinates solution of @& problem” defined
by Egs. (30)—(32).

3. ADISCRETE-ORDINATES SOLUTION

Itis clear that th&s problem we must solve depends on the transform varlglblewever,
in order to avoid too much heavy notation we choose, in this (and the next) section,
suppress the explick-dependent notation we have used to this point in our work. We not
from Eq. (16) thatF(2) is, in general, a complex function of a real variable, and so, of
course, the resultinG (z, &) is also a complex function. However, we can consider Eq. (30
written as

8 Y
EEG(Z,EH-G(Z,E) = %/ $(U)G(z, u)du + Q(2), (35)
-V

where we can tak&)(z) to be either the real or imaginary part Bf(z)/2 and thus can
obtain either the real or imaginary part@fz, £). Our development of a discrete-ordinates
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solution of Eq. (35) follows closely Ref. [12], and so we will be brief here. Sin@e) is
an even function, we write our discrete-ordinates equations as

d N
§i,C@ &)+ 6z = % > wk @Gz &) + Gz &) + Q2 (36a)

k=1

and
d T
=§ &G(Z, -&)+G(z —-§) = > g wie (E[G(Z, &) + G(z, —&)] + Q(2) (36Db)

fori =1,2, ..., N.Inwriting Egs. (36) as we have, we clearly are considering thalthe
guadrature pointg} and theN weights{wy} are defined for use on the integration interval
[0, y]. Of course we are free to use a single quadrature scheme on the interygl [0
or we can use a composite quadrature defined over sub-intervals)gf [dow seeking
exponential solutions of the homogeneous equations, we substitute
G(z, £&) = ¢ (v, £&) exp{—z/v} (37)
into the homogeneous versions of Egs. (36) to find
1
2P, =(1-WP, —WD_ (38a)
vV
and
1
—CE_=(1 -W)&_ -Wo,, (38b)
V
wherel is theN x N identity matrix,

O, =[p(v, 1), d(v, £&2), ..., (v, £EV], (39)

the elements of th&/ matrix are given by

Wy = Zwjd (&) (40)
and
E = diagi&y, &, ..., En)- (41)
If we let
U=&, +P_ (42)
and

V==&, —&_ (43)
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then we can eliminat¥ between the sum and the difference of Egs. (38) to find
—_——2 ——T\ A= —1 = 1 [}
(B —-2E"WE"HEU = —&U, (44)
)Y

where to hav& ! exist we cannot allow any of the quadrature points to be zero. Multiplying
Eqg. (44) by the diagonal matrik with the diagonal elements given by

- 12
Ti = [zwifﬁ(é‘i)] (45)

we can makd@ WT~! symmetric so we can rewrite Eq. (44) as

(D —zz")X = AX, (46)
where
D =diag{é;% &2 ..., &%), (47)
X =TEU, (48)
,_ [Yowd@E) Vouwd®  JmundGEn] (49)
&1 ’ & Y &N ’

andx =1/v2. We note that the eigenvalue problem defined by Eq. (46) is of a form th:
is encountered when the so-called “divide and conquer” method [17] is used to find t
eigenvalues of tridiagonal matrices. This special eigenvalue problem has been discus
in Ref. [18], and a special numerical package DZPACK has been made available [18]
dealing with this eigenvalue problem.

Considering that we have found the required eigenvalues from Eq. (46), we impose
normalization condition

N
> wid @S (v, £ + p(v, —&)] = 1 (50)

k=1
so that we can write our discrete-ordinates solution as
N
Gh(z, £&) = Z[Aj¢(Vj , k&) exp{—z/v;} + Bjd (vj, F&) exp—(20 — 2)/v;}] (51)
j=1
with

@ v
2viFE

¢ (vj, £&) = (52)
The arbitrary constantsA;} and{B;} in Eq. (51) are to be determined from the boundary
conditions, and the separation constgmn{s are the reciprocals of the positive square roots
of the eigenvalues defined by Eqg. (46). We note also that we have added the subsxript
remind us that the solution given by Eq. (51) applies only to the homogeneous versions
Egs. (36).
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Since Egs. (36) have the inhomogeneous source @(m we must add a particular
solution toGh(z, £ &) to obtain the complete solution. Seeking a particular solution of the
form

Gp(z, £&i) = B(£&i) exp{—z/Uo}, (53)
we find from Eqs. (36)
Gp(z. £&) = R (1U0) U & exp{—z/Uo}, (54)
where
2(Uo) =1+ @I'(Uo) (55)
with
I'(Ug) = U Z w”‘i’@“ . (56)

We now write our complete solution as
G(z, &) = Gn(z, £&i) + Gp(z, £&), (57)

where the arbitrary constangs andB; required in Eq. (51) are defined by the system of
linear algebraic equations obtained when we substitute Eq. (57) into Egs. (31) evaluatel
the quadrature points, viz.

N

> [Aj¢). &) + Bip(vj, —&)e ®/"] = =G (0, &) (58a)
j=1
and
N
> [Bip(j. &) + Ajp(vj, —E)e M| = —Gp(zo, —&) (58b)
j=1
fori=12,..., N. Once we have solved Egs. (58) we can use Eqg. (57) in our discret

ordinates versions of Egs. (34), viz.

N
L2 =) wkp &G &) + G(Z —&)] (59a)
k=1
and

N
H@) =) wéd® GGz &) — Gz, —&)] (59D)
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to find

N
L(2) =) [Ajexp—z/vj} + Bj exp(—(zo — 2)/vi}] + Lp(2) (60a)
j=1
and

N
H(z) = (1—wK)Z vid?(v)[A] exp(—z/vj} — Bj expi—(zo—2)/vj}]+Hp(2), (60b)

=1

where
ruy
Lp(2) = _sz((u(;)) exp(—z/Uo} (61a)
and
UK +T (U
Hy(2) = Q(fJ[o)(kZU(Z _0)]1) exp{—z/Up}. (61b)
0
In addition
N
K=) wg®0. (62)

k=1

We note that we typically have us&d= 1 in Egs. (60b) and (61b) which, strictly speaking,
is true only if the quadrature scheme used in Eg. (62) evallk&tesactly.

4. POST PROCESSING

While Egs. (60) and (61) provide expressions we can readily evaluate to find the functic
L(2) and H(z) required to complete Egs. (33), we can also use the idea [19] of “po:
processing” to define alternative results. If we use Eq. (59a) to replace the integral term
Eq. (35), we can then solve the resulting equation to find

1 (2 [w
G(z,-§) = 3 / {2 LX) + Q(X)] exp{—(X — 2)/&} dx (63a)
and
1 (o
Gz §) = g/o [ZL(X) + Q(X)} exp(—(z — x)/&} dx (63b)

for all £ € (0, y]. SinceL(2), as given by Egs. (60a) and (61a), aRdz) are defined by
exponentials, we can integrate Egs. (63) to find

Uo
2Q2(Up)

Gz —&) = expi—z/Uo}S(zo — : Uo, £) + %T(z, —£)  (64a)
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and
_ Uo . w
G(z$) = ZQ(UO)C(Z' Uo,§) + ?T(Z’ £), (64b)
where
N
YT(z,—&) = Z vi[Ajexp{—z/vj}S(zo — z:vj, &) + BjC(z0— z: v}, £)] (65a)
j=1
and

N

YT(z,&) = Zv,-[AjC(z 1V, &)+ Bjexp—(z0 — 2)/v;}S(z: vj, £)].  (65b)

=1

In addition, theS andC functions are given by

_ 1— e Uxe 2y
S(z:x,y) = Ty (66a)
and
) efz/x _ efz/y
Now since Egs. (64) are valid for continuous value$ tiiey can be used in
Y
L@ = [ ol 6 + e -6 (672)
and
14
H@ = [ e ©l6a.6 - 6. ~6lds (67b)

toyield post-processed results fofz) andH (z). To evaluate Egs. (67) we can, as suggestec
by Nelson [20], use different quadrature rules fgr) andH (z), and so we can write

Na
L@ =) ap )Gz 1a) + G(Z —1a)] (68a)
a=1
and
Np
H@ =) 0.09’(@)G(Z ) — G(Z —G)], (68b)
a=1

where theN, weights and node&,, n,} and theN, weights and node&,, ¢,} define
two quadrature rules for use on the integration intervaj/[OWe consider Eqgs. (68) to be
viable alternatives to Eqgs. (60) especially since we are free to use convenient quadra
schemes to evaluate these expressions. We postpone a discussion of the numerical as
of our computation until Section 6 where we make some additional comments concerni
the relative merits of Egs. (60) and (68).

Considering that we have solved our problem in transform space, we proceed to ca
out the necessary inversions to find the results we seek.
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5. THE FOURIER INVERSION

Having defined our solution of the pseudo problem, we considetifzat) andH (z: k),

as defined by Eqgs. (60) or Egs. (68), are available, and so we are ready to evaluate the Fo
inversion integrals to find the radiation fluxes and the radiation currents we seek. Note t
we now indicate (again) more explicitly the dependence of various quantities on the Fouri
transform variablé. While our analysis to this point has been general, we now restrict oL
computation to the special case of normal incidencg=t 1) where one of the inversion
integrals can be evaluated analytically. Here, singe- 1 and thutJy (k) = 1, the transforms
Wo(z: k) andWwy(z: k) are independent of the angle and so we rewrite Egs. (11) as

1 00
lg(z, p) = Z/o Wg(z: k) Jo(kp)k dk (69)

for =0 or 1. Of course, we are using(x) to denote the first Bessel function of the
first kind [21], and we are replacifigwith k in our notation. Continuing, we now rewrite
Egs. (33) as

Wo(z:k) = exp{—z} + wL(z:k) (70a)
and
W, (z:K) = exp{—z} + w H(z: k). (70b)

Next we can substitute Eqgs. (70) into Eqg. (69) to find

lo(z, p) = % exp(—z} + %J(z, ) (71a)
and
1z, p) = % exp—z) + % F(z ), (71b)
where
J(z, p) = /OOO L(z: k) Jo(ko)k dk (72a)
and
F(z, p) = /0 ” H (z: k) Jo(kp)k dk. (72b)

We note that the quantitiel(z, p) andF(z, p), which we rewrite as

J(z,p) = p—lz/oo XL(z:x/p)Jo(x) dx (73a)
0
and

F(z p) = %/m XH(z: x/0)Jo(x) dx, (73b)
0
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have been expressed in terms of our solution toGhgroblem, i.e., in terms oL (z: k)
andH (z: k), and so are considered available, if not yet evaluated. Before proceeding
our numerical work we note that Egs. (71) can be used as Green'’s functions and thus
defined, in a sense, for agil; however, those equations make sense numerically only fo
p>0.

6. NUMERICAL RESULTS

Before discussing some details concerning the way we have implemented our solutior
the G problem, we comment on the way we evaluated Egs. (73) once the funttiank)
andH (z: k) were available. Having found that the integrands in Egs. (73) oscillate abol
zero, we followed the work of Longman [22] and made use of an Euler transformation [23]
evaluate these difficult integrals numerically. To review the mentioned Euler transformatic
consider the infinite series

S=Y (D", (74)
n=0

whereV, > 0 andV,;1 < V, for all n. The Euler transformation allows us to rewras

=1
$=) 5 (-D"A"Ve, (75)
n=0
where
A%, =V, (76a)
AVn = Vn+1 - Vn’ (76b)
A2V, = AVhi1 — AV, (76c)
and, in general,
AV, = ATV — ATV, (76d)
We choose to use the binomial coefficieBi, ), j =1,2,...,i + 1, to express the terms
in Eq. (75) in the form
n+1 )
A"Vo = (=DIT'B(N, [)Vat1j. (77)

=1

It follows [22, 23] that if the series defined by Eq. (74) converges, then so does the ser
defined by Eq. (75). In addition, and importantly for us here, when Egs. (74) and (75) a
approximated by a finite number of terms, then the resulting sum from Eq. (75) can yielc
much more accurate result.

Totestthisidea of Longman (based, of course, on the Euler transformation) we conside
the test quantity

E=1- /Oo Jo(x) dx. (78)
0
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We approximated the infinite integration interval in Eq. (78) by a finite number of subinte
vals defined by the zeros G§(x) and used integrals (we used a Gauss—Legendre quadratu
scheme for each subinterval) over these subintervals to defing tineeq. (74). Using as
many as, say, 50 of the defined subintervals, we coultigdtom Eq. (74) to be no smaller
than, say, 10°. But from Eq. (75) we foundE | as small as 10" using this same number
of subintervals (or fewer).

Focusing our attention now on some of the computational details concerning the imp
mentation of our discrete-ordinates solution of@problem defined by Egs. (30) and (31),
we consider that the first thing we must do is to define a quadrature scheme. In that reg
we consider it important to note that the formulation of our discrete-ordinates solution
essentially independent of the quadrature scheme to be used. The only two restrictions
have imposed are that tikequadrature point&} and theN weights{wy} must be defined
for use on the integration interval,[@] and, because of the way our basic eigenvalue prob:
lem is formulated, that we must exclude zero from the set of quadrature points. Of cou
to exclude zero from the quadrature set is not considered a serious restriction since typ
Gauss quadrature schemes do not include the end points of the integration interval.

To see a “reason” for using the quadrature scheme we have used in this work, we cons
an integral of a form suggested by a “half-range” version of the integral term in Eq. (3C
viz.

Y
| =/0 (6 OF &) de. (79)

which we immediately rewrite as

1
I :y/o ¢ (yx:KF(yx)dx. (80)

Here, we note Eqgs. (32) and write

1

p(yx:k) = (1= r2x2)12’

(81)

where

k

r = ATk (82)

Itis clear that as approaches 1 (large valueslgfa linear mapping of a Gauss—Legendre
scheme onto the interval [0, 1] is not going to work well for evaluating our considere
integral. And so we lex = g(y), with g(0) =0, and rewrite Eqg. (80) as

=y /O oLy KIFLyaylg (y) dy. (83)

whereg(u) = 1. We now set

1/2

yg'(y) =[1—r2g(y)?] (84)
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and solve foig(y) andu to obtain

ay) = r}sin (%) and u= % arcsin(r). (85)

At this point we consider that we hawé Gauss—Legendre weights and nodés, X, }
that have been mapped (linearly) onto the integration interval [0, 1], and so we write O
guadrature version of Eq. (79) as

N
= waF (&), (86)
a=1
where
We = Ul (87a)
and
& = y9(UXy). (87b)

So our discrete-ordinates solution of Beproblem is based on thd weights and nodes
defined by Egs. (87).

Having defined our quadrature scheme, we have used the package DZPACK [18] to f
the eigenvalueg\; } from the eigenvalue problem defined by Eq. (46). The required separ:
tion constants were then available as the reciprocals of the square roots of these eigenva
We then used the subroutines DGECO and DGESL from the LINPACK package [24]
solve the linear system defined by Egs. (58), and so the solution tG g®blem was
considered established.

In order to test our discrete-ordinates solution to the classical searchlight problem,
consider the particular case solved by Fagmethod in Ref. [8], viz. we consider the case of
a beam normally incidenid, = 1) on a finite slab of optical thicknegg= 1 with @ = 0.8.

Our results are given, with what we believe to be five figures of accuracy, in Tables | and

Of course, we have carried out numerous numerical experiments to establish the c
fidence we have in our discrete-ordinates solution, and in comparing Tables | and Il wi
the same tables from Ref. [8], we have found only one case that differed by more than c
unit in the fifth figure reported [8.8949(-2) vs 8.8956(—2)]. This difference was found fg
what we consider the most difficult case: the radiation current calculatign#£dd.001 and
z=0.1. In the process of evaluating the numerical results obtained from our FORTRA
implementation of the discrete-ordinates solution developed here, we saw again a situa
that deserves comment. For the radiation current calculation, in contrast to the flux cal
lation, the result can be positive, negative, and, in fact, zero. And so there clearly will |
certain values of the independent variables for which a numerical computation (carried
on a machine with a finite word length) can yield values for which none of the figures a
correct. While we may think of these special cases as truly exceptional, we must at the s¢
time not take all suggestions of achieved accuracy to be definitive statements.

Inregard to the computation of the functidn& : k) andH (z: k) required for the Fourier
inversion, we note that the simpler representations given by Egs. (60) worked very well {
all but, say, the two smallest of the considered valueg.dfo have the results with five
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TABLE |
The Radiation Flux 19(nz, p) for z=1.0, 70 =0.8, and uo = 1.0

723

P n=0 n=0.05 n=0.1 n=0.2 n=0.5 n=0.75 n=1
0.001 9.9687(1) 1.8940(2) 1.8083(2) 1.6396(2) 1.2164(2) 9.4723(1) 3.7008(1)
0.010 9.7637 1.7924(1) 1.7703(1) 1.6356(1) 1.2291(1) 9.5620 3.8185
0.100 8.40771) 1.1361 1.3086 1.4089 1.1991 9.2630) 4.2588(1)
0.200 3.6477¢1) 4.4620¢1) 5.0743¢1) 5.7604(1) 5.4481¢1) 4.2286(1) 2.1656(1)
0.400 1.3991f1) 1.6123¢1) 1.7785¢1) 2.0195¢1) 2.1090¢1) 1.7022¢1) 1.0015¢(1)
0.600 7.2196(2) 8.1428(2) 8.8471¢2) 9.9110(2) 1.0661¢1) 8.9826(2) 5.7469(2)
0.800 4.2094(2) 4.6948(2) 5.0567(2) 5.6058(2) 6.0809¢2) 5.2919¢2) 3.5779(2)
1.000 2.6269¢2) 2.9097¢2) 3.1167(2) 3.4295¢2) 3.7280(2) 3.3174¢2) 2.3298(2)
1.200 1.7130¢2) 1.8887(2) 2.0154(2) 2.2058¢2) 2.3981(2) 2.1669¢2) 1.5634¢2)
1400 1.1523¢2) 1.2663(2) 1.3476(2) 1.4692(2) 1.5964(2) 1.4581¢2) 1.0729¢2)
1.600 7.934143) 8.6977(3) 9.2373(3) 1.0041¢2) 1.0902¢2) 1.0036(2) 7.4936(3)
1.800 5.562743) 6.0867(3) 6.4543(3) 7.0001¢3) 7.5946(3) 7.0314(3) 5.3094¢3)
2.000 3.9573¢3) 4.3237¢3) 4.5792(3) 4.9575¢3) 5.3745(3) 4.9978(3) 3.8072(3)
2.200 2.8490¢(3) 3.1092¢3) 3.2896(3) 3.5562(3) 3.8527(3) 3.5949(3) 2.7577(3)
2400 2.0718¢3) 2.2587(3) 2.3879¢3) 2.5782¢3) 2.7915¢3) 2.6117¢3) 2.0149¢3)
2.600 1.5194(3) 1.6552(3) 1.7486(3) 1.8861¢3) 2.0409¢3) 1.9137(3) 1.4833(3)
2.800 1.1225¢3) 1.2219¢3) 1.2902¢3) 1.3904¢3) 1.5037¢3) 1.4125(3) 1.0991¢3)
3.000 8.3450(4) 9.0791¢4) 9.5815¢4) 1.0318(3) 1.1154(3) 1.0493(3) 8.1920(4)
4.000 2.0375(4) 2.2122¢4) 2.3307¢4) 2.5035(4) 2.7012¢4) 2.5532¢4) 2.0153(4)
5.000 5.4060(5) 5.8629¢5) 6.1708(5) 6.6182¢5) 7.1317¢(5) 6.7579¢5) 5.3665(5)

TABLE Il
The Radiation Current 11(nz, p) for 2=1.0,w =0.8, and o =1.0

P n=0 n=0.05 n=0.1 n=0.2 n=0.5 n=0.75 n=1
0.001 -6.3217(1) —5.5479¢1) 8.8949(2) 3.7952(1) 4.4737¢1) 4.2432(1) 2.3563(1)
0.010 —6.0631 —8.0834(1) —1.7275¢1) 1.4020¢1) 2.6978¢1) 2.8594(1) 2.4292
0.100 —4.7074(1) —3.7797¢1) —2.4177¢1) —6.1321(2) 9.5914(2) 1.4392(1) 2.6473¢1)
0.200 —1.9033(1) -1.6963(1) —1.3636(1) —6.4882(2) 4.9976(2) 9.4158(2) 1.3034(1)
0.400 —6.5932(-2) —6.0425¢2) —5.3057(2) —3.4794(2) 1.6980¢2) 4.4123(2) 5.6066¢(2)
0.600 —3.1437(2) —2.8851¢2) —2.5732(2) —1.8235(2) 6.6958(3) 2.2312(2) 2.9825(2)
0.800 —1.7167(2) —-1.5717¢2) —1.4061(2) —1.0224(2) 2.9517¢3) 1.2089(2) 1.7259¢2)
1.000 —1.0138¢2) —9.2563(3) —8.2814(3) —6.0868(-3) 1.4202(3) 6.9498(3) 1.0510(2)
1.200 —6.3099¢3) —5.7477¢3) —5.1392(3) —3.7982(3) 7.3166(4) 4.1954(3) 6.6435(3)
1.400 —4.0799¢3) —3.7097¢3) —3.3148(3) —2.4583(3) 3.9791(4) 2.6353(3) 4.3262(3)
1.600 —2.7157¢3) —2.4659¢(3) —2.2023(3) —1.6371(3) 2.2604(4) 1.7094(3) 2.8865(3)
1.800 —1.8494¢3) —1.6775¢3) —1.4976(3) —1.1153(3) 1.3307(4) 1.1382(3) 1.9652(3)
2.000 —1.2829¢3) —1.1627¢3) —1.0376(3) —7.7387(4) 8.0708(5) 7.7433(4) 1.3609(3)
2.200 —9.0339¢4) —8.1822(-4) —7.3004(4) —5.4510(4) 5.0192(5) 5.3620¢4) 9.5601(4)
2.400 —6.4424¢4) —5.8319¢4) -5.2024(4) —3.8882(4) 3.1891(5) 3.7686(4) 6.7990(4)
2.600 —4.6435(4) —4.2017¢4) —3.7475(4) —2.8030(4) 2.0641(5) 2.6822(4) 4.8867(4)
2.800 —3.3776(4) —3.0551¢4) —2.7245¢4) —2.0392(-4) 1.3576(5) 1.9296(4) 3.5446(4)
3.000 —2.4762(4) —2.2391¢4) —1.9966(4) —1.4952(4) 9.0570¢6) 1.4010(4) 2.5917¢4)
4.000 —5.7322(-5) -5.1778(5) —4.6150(5) —3.4621(5) 1.4082(6) 3.1342(5) 5.9338(5)
5.000 —1.4673(5) —1.3246(5) —1.1803(5) —8.8619¢6) 2.6435¢7) 7.8622(6) 1.5076¢5)
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figures of accuracy for these two small valuespofre found it expedient to use the post-
processed results given by Eqgs. (68). We note that we typically NgegN, when using
Egs. (68), and since Eqg. (68a) is of the form considered in Eq. (79) we used weights ¢
nodes as defined by Eqgs. (87) for this calculation. Finally, since Eq. (68b) has the fac
¢°(¢) we developed a special quadrature scheme, in the same spirit as was used to de
Egs. (87), for use in computing (z: k) from the post-processed expression.

To have some idea about the computational parameters we have used in this work we
z, denote the total number of loops af(x) we have considered in Eqgs. (73). We also let
z; denote the number of loops used before the Euler transformation is invoked to accelel
the converge of the Fourier inversion calculation. Continuing we note that in evaluating t
integrals over the various loops defined by the zerod of) we typically subdivided each
integration interval into four subintervals and used, $dy,Gauss—Legendre quadrature
points mapped linearly onto each of the subintervals. Finally to have some idea about
computational parameters we have used to obtain the results given in Tables | and I,
note that we have used, for examphe= 50, Ny = 10, z; = 75, andz, = 87 for all but the
smallest two values gf. On the other hand, for the smallest two valueg ofe considered,
we have used, for exampld,= 20, Ny =50,z; =5, andz, = 17 with N, = 80 andN,, = 80.

Concerning the computational time required to obtain the results reported in Table
and I, we note, first of all, that only a modest effort has been made to make our FORTRA
implementation of the developed solution efficient as far as speed is concerned. Hav
said that, we can say that our computations (defined by the parameters mentioned in
foregoing paragraph) that yielded the results given in Tables | and Il required 77 minut
(split approximately equally between the two smallest values ahd the remaining 18
values ofp) on a 400 MHz Pentium-based computer. Needless to say, the process of solv
an equation of transfer in Fourier-transform space and carrying out a numerical inversi
can be considered a computationally intensive task; however, we consider that we h
solved well a difficult problem basic to the theory of radiative transfer.

7. CONCLUDING REMARKS

Of course we would like to comment on the way we see this work as a valuable alternat
to Ref. [8]. First of all the discrete-ordinates solution developed here does not require &
experience with the theory of singular-integral equations, and so we consider this wc
more readily accessible to many workers in the field of radiative transfer. In addition tt
solution developed here is not subdivided into three components (the uncollided, the o
collided, and the rest), as was done earlier [8], and so some of the analysis is simpler.

While we have not attempted to evaluate our solution for the case of a non-norma
incident beam, itis clear that our solution of tBeroblem requires very little modification
for that case. The main challenge for the case of non-normal incidence is the task
evaluating two-dimensional Fourier-inversion integrals; Refs. [9, 10] discuss this case |
a semi-infinite gy — oco) medium.

We consider it worthwhile to mention that we have seen again in this work how ver
important the choice of the quadrature scheme used to solve the equation of transfer car
In this regard, we note that in addition to the special-purpose quadrature set summarizet
Egs. (87), we have also used other linear and non-linear maps to define integration schei
While we generally found good results using these other quadrature schemes fot,
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we found our best results fgr < 0.1 by using Eqgs. (87) to define our discrete-ordinates
solution of the equation of transfer. Finally, we have seen in this work the interesting (
least to us) situation where one of the quantities, ¥zz), we wished to compute was
well evaluated by using a second special-purpose quadrature scheme in the relevant y
processing expression, i.e., Eq. (68b).
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